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Multi-theta distributions of local structures in 
condensed matter: a new route to triplet and higher- 
order molecular distributions from scattering data 

Shalom Baer 
Department of Physical Chemistry, The Hebrew University, 91904 Jerusalem. Israel 

Received 18 May 1990, in final form 15 April 1990 

Abstract. Triplet and higher-order molecular distributions in condensed media are obtained 
from pair distributions by extension of a method based on the notion of spatial Markoffian- 
like processes for local ordered structures. The extension is achieved by defining the spatial 
process in terms of multivariate theta distributions, in full analogy with multivariate dis- 
tributions of a temporal Gaussian process. This result enables one to obtain effective pair 
potentials from empirical radial distributions by solving the BKY integral equation relating 
the pair potential to pair and triplet distributions. The relative merits of a microscopic 
description of the condensed system in terms of effective pair potentials or in terms of local 
structures are discussed. 

1. Introduction and summary 

The radial distribution function g ( r )  provides the most direct experimental information, 
available mainly through scattering data, about the spatial arrangement of the atoms in 
condensed non-crystalline systems. However, by itself g ( r )  constitutes only very partial 
information on the atomic configurations in such phases. In contrast, a computer simu- 
lation gives us the fullest possible information on the atomic configurations, but it has 
to rely on assumed intermolecular potentials in order to determine the trajectories in 
molecular dynamics or the energy distribution in Monte Carlo calculations. 

In principle, when the molecules interact only via pair potentials, complete infor- 
mation on the atomic configurations can be extracted from g ( r )  alone, since by classical 
statistical mechanics all higher-order molecular distributions g'"), n > 2, are uniquely 
determined byg = g(*) (Abe 1959, Stell 1964). However, in practice we can knowg(") = 
g(")[g] only approximately, and even that, at present, reasonably well only for n = 3. 

Nevertheless, a knowledge of g(3) seems to provide much additional information 
necessary for more refined calculations of structural properties. In recent years several 
approximations have been devised, which are more accurate than the superpositon 
approximation (and the more recent convolution approximation, Jackson and Feenberg 
1962, Ichimaru 1970) and have proved useful in several respects: Haymet eta1 (1981a, b) 
have used a truncated diagrammatic expansion of g(3) in terms of g and thus could find 
the pair potential U ( T )  from g ( r )  of simple fluids by solving the BKY integral equation 
involving g, g(3)  and U. Higher-order g(") can be expressed also in terms of direct 
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correlation functions dfl) (see e.g. Stell 1964, Baxter 1971) which play a key role in 
density functional theories of inhomogeneous fluids, in relation to derivation of 
improved integral equations for g and in theories of freezing. Rosenfeld (1989) has 
obtained dn) ,  n 3, for hard-sphere systems from consideration of general constraints 
imposed by the exclusion volume on the spatial configuration of the spheres. His results 
for d3)  have been recently supported by extensive Monte Carlo simulations of hard- 
sphere systems near freezing (Rosenfeld er a1 1990). The function d3)  determines third- 
order corrections to the free energy of crystal phases (see e.g. Barrat er a1 1987), and 
hence is crucial in determining the freezing transition. 

In this article we will present a new method for obtaining all higher g‘”), and in 
particular g(3), from g ( r )  data. The method is an extension of a certain modelling of g ( r )  
that is derived from the notion of a diffusion-like spatial random process for local 
structures in a non-crystalline phase (Baer 1977, 1979, 1987). This ‘structural diffusion’ 
process is defined in terms of the pair distribution of local ordered structures (the 
‘structural’ pair distribution), from which g(r )  is uniquely determined. 

The form of the structural pair distribution (a trivariate theta function, see below) 
suggests generalization to a random process defined by an hierarchy of multiplet dis- 
tributions uniquely related to the pair distribution. Correspondingly we obtain an explicit 
expression for all higher-order molecular distributions g‘”), whose numerical values are 
uniquely determined from those of the radial distribution g(r ) .  In particular we give an 
expression for g(3) in terms of the parameters characterizing g(r ) .  As mentioned above, 
g(3) can be utilized in a BKY integral equation to obtain an effective pair potential. We 
will consider the question of uniqueness and characteristics of such apotential in relation 
to the assumed local structures of the structural diffusion model. Work on numerical 
solution of the integral equation for u ( r )  from typical g(r )  functions for simple 
monoatomic liquids will be published elsewhere. 

2. Molecular and structural pair distributions 

The modelling of radial distribution functions of liquids and amorphous solids in terms 
of local ordered structures related by a spatial Markoffian-type process (Baer 1977, 
1979) provides a parametrized analytic expression for g ( r )  that is both formally concise 
and suggestive of the local spatial arrangement of the atoms. The expression for g ( r ) ,  
given as a sum over the points of the reciprocal of a given lattice L characteristic of the 
local structure, is 

This is based on the assumption that two local lattice structures L at different points in 
space can differ by a certain relative displacement s in ‘structure’ space and that this 
displacement obeys a certain spatial Markoffian-type process ins space. In the following 
we consider only the simplest case of L periodic in 3~ space and s a simple translation 
of L. 

The probability density P(s  1 r )  for such a process at a separation r between two 
localities is obtained in the form 

1 
P(s  1 r )  = - 

u u  
exp( - Wb? + ib, - s) 
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where 
3 

b ,  = vibi v ;  = 0 ,  k l ,  k 2 , .  . . (3) 
i =  1 

are the position vectors of the reciprocal lattice points, U is the volume of the unit cell of 
L and W = W ( r )  is a monotonic, asymptotically linear, function of r ,  

The constant D, termed the 'structural diffusion coefficient', serves as a measure of the 
radial rate of decay of coherence between local structures. The RHS of ( 2 )  is the periodic 
solution of a diffusion-type equation for P in s space. It is the well known Fourier series 
representation of a theta function (see e.g. Bellman 1961) and is fully analogous to the 
Fourier integral representation of the Gaussian distribution function 

W ( r )  - Dr r -  m. (4) 

An alternative representation of the theta function as a sum of Gaussians corresponding 
to the LHS of (5) has the form 

where the sum in (2') now extends over the lattice points, a,, of the primitive lattice of 
L. Equation (2') is obtained by a transformation of (2) via the Poisson sum formula. 

It is clear that a representation of g ( r )  by (1) can be made increasingly accurate by 
choosing L to be a sufficiently complex lattice or by extending structure space to higher 
dimensions (Baer 1987). Nevertheless in recent calculations, using a simple local lattice 
L in ( l ) ,  it was possible to reproduce with good accuracy g(r )  data available from 
simulation and scattering experiments for several amorphous solid and liquid metal 
systems (Canessa et a1 1988, Baer et a1 1988, Lopez and Silbert 1989, Baer et a1 1990). 
The success of the representation of g ( r ) ,  based on such a seemingly restricted view 
of the structure of liquid and amorphous systems, is supported by certain general 
considerations (Baer and Silbert 1986, Baer 1988) entirely independently of an assumed 
local lattice and leading to a general representation of g(r )  of the form (1). Thus (1) can 
be considered as a basis for theoretical studies while also being practically useful. 

3. Higher-order distributions 

An extension of the foregoing methods of modelling g(r )  to higher g(") requires first an 
expression for the multiplet distribution of the 'local structures' sl, s 2 ? .  . . , s,, at n 
localities r l ,  r2, . . . , r,,. However, we note that any attempt to extend the method of 
spatial Markoffian processes to distributions at more than two localities encounters the 
difficulty of a restriction to sequential ordering of the points in space. Such an ordering 
is natural in temporal processes but useless for spatial processes that are not evolving 
radially. Nevertheless, there exist generalizations of certain temporal Markoffian pro- 
cesses where the ordering becomes inessential. An example of such a process is the 
stationary Gaussian process (see e.g. Van Kampen 1981) which can be readily tran- 
scribed into the spatial case. By analogy with the generalization of ( 5 )  to a multivariate 
Gaussian distribution, we can generalize (2) to an nth-order distribution of local struc- 
tures at n different points in space: 
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The multiple sum in (6) extends over the points of the reciprocal lattice L, with the 
restriction on the sums implying an independent summation over the position vectors 
of n - 1 points with respect to an nth point. The RHS of (6) is the Fourier series 
representation of a multi-(3(n - 1) dimensional-) theta function (see Krazer 1903), 
which has also an alternative representation as a multiple sum of multi-Gaussian func- 
tions summed over lattice points. Such a multiple sum is a straightforward generalization 
of (2’) (see section 4). 

It is now possible to obtain all g(“) directly from P(”) given by (6). We will illustrate 
this in explicit form for n = 3. Writing P3) specifically as P(3) ( s l ,  s2, s3 1 rt2, r13, r,,),  we 
obtain for the molecular triplet distribution 

n(3 ) ( r l ,  r 2 ,  r 3 )  = j j / d 3 s l  d3s2 d3s3 p(3j(sI,s2,s3 t r12 , r13 , r23)  

x dr19 sI)P(r*, sz lP(r3 ,  s3) (7) 

(8) 

where p(r ,  s) are local singlet molecular densities given by 

p( r ,  s) = IC 6(r  - a ,  - s) a ,  = a,  + a,. 
T 

We use here the index set z = (p, a )  to count all lattice points, were p counts the unit 
cells and acounts the points within a single cell. Thus the z-summation is understood as 
a double summation, over both p- and a-sets. Substituting (8) and (7), we obtain 

n ( 3 ) ( t l , r 2 ~ r 3 )  = IC ~ ( ~ j ( r ~  - a o I , r 2  -a , , , r3  - a o 3 1 r 1 2 , r 1 3 9 r 2 3 ) .  (9) 
“1 3 “2% “3 

We have utilized here the fact that since each s integration extends over one unit cell, it 
leaves a contribution of only one p-term from each sum (8) of 6-functions. Furthermore, 
since P(3) is periodic with respect to each s variable, one can drop any additive constants 
a, in the arguments. Making use now of (6), n = 3, and noting that the average density 
p = n u / u ,  we obtain the following expression for g(3): 

d3) ( r I2  h 3  r23)  = c e x p p  W J b v ,  * b ” , )  
v 1 + v 2 + v 3 = O  I < /  

x r (b” , ) r (b”2 ) r (b”~) (exP( i (b”~  * r l  + bvz  *r2 + b , ,  .%I) ) .  (10) 
Here T ( b )  is a ‘unit-cell scattering amplitude’ defined by 

which also determines the coefficients C, in (1) by (see Baer 1979) 

c ,  = lr(b”>12. (11’) 
In the simple case of one particle per unit cell, i.e. n, = 1, we have 

r ( b )  = 1. (1 1”) 
The angular brackets ( ) denote averaging over all orientations of the vectors rl ,  r2, r,, 
rotated rigidly together while keeping L fixed in space, or alternatively averaging over 
all orientations of L, keeping the vectors rl,  r2, r3 fixed. Since the restriction on the 
summation in (10) implies 

the expression inside the angular brackets depends only on the relative position vectors 
rI3 = rl - r3, r23 = r2 - r3, making the expression independent of the frame of reference. 
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The reduction of the orientational averaging to a single quadrature is given in 
appendix A.  Denoting by q12 and q12 the angles between the pairs of vectors (r13, r23) 
and ( b , , ,  b v 2 ) ,  respectively, we have by (A13) 

(exp(i(b,, r13 + b, ,  * r23))) = 2 Jo Jo(A sin2 8)Jo(B cos2 8)  sin 8 cos 8 d 8  

where J o ( x )  is the Bessel functions of order zero and 
A ] = (b2ylrf3 + b2,,ri3 + 2 b v , b v 2 r 1 3 r 2 3 ( ~ ~ ~  q I2  cos v I2  t sin q12 sin v12))1'2. (14) B 
Although not apparent from this form, equation (13) must by definition, considering 
(12), be invariant to any permutation of the indices 1, 2 ,  3. In the special case when 
either qI2 = 0 or V l 2  = 0, A = B and (13) reduces to (see Magnus et a1 1966) 

where jo(x) = (sin x ) / x  is the spherical Bessel function of order zero. 
It is instructive to examine the conditions for convergence of the sum in (10). Such 

conditions impose new restrictions on the function W ( r ) .  In particular, convergence 
requires that when substituting (12 )  into (10) the quadratic form in b , ,  and b, ,  , on the 
RHS of (lo),  be negative definite. Thus, since we have 

X I 2  

(13) 

(exp(i(bv, * r13 + b v 2  ' r 2 3 ) ) )  (15) 

2 

this requires that the determinant of the 2 X 2 matrix {e,]} is positive. Denoting the 
determinant by Q ,  we have thus 

This inequality holds when the W(r,) satisfy the triangle inequalities 

These inequalities hold indeed for the asymptotic form (4) of W ( r ) .  Yet some triangle 
inequality might be violated for very short distances. Clearly g(r I2 ,  r23, r13) must prac- 
tically vanish for any pair distance smaller than a certain exclusion diameter, say ro. By 
(1) this implies that W ( r )  = 0 for r S ro. Yet if this holds for one pair while (4) holds for 
the two other pairs, then (18) could still either hold or be violated, and correspondingly 
the double series in (10) would be either convergent or divergent. This indicates that 
certain modifications have to be made in (6) for very small pair distances. 

4Q = ~ W ( T I ~ ) ( W ( ~ I ~ )  + W(r23)) - (W(r12))* - (W(r13) - W(r23))* > O .  

w ( r 1 3 )  + W ( r 2 3 )  > W(r12)  

(18) 

(19) 1 W(r13) - W(r23) I < W(r12). 

4. Alternative representations of g(3) 

In correspondence with the aforementioned different representations of the theta func- 
tions, there are beside (10) alternative series representations for g(3) ,  each converging 
more rapidly in a different domain of the pair distances rI2, r I3 ,  r23. Putting rI3 = r,  r23 = 
s and r12 = t ,  we have now for the matrix elements Q ,  in (16) 

Q I I  = W(r> 
W ( r ,  s, t )  = W ( r )  + W ( s )  - W(t)  

Q 12 = Q 2 1  = 1W(r, S, t )  
(17') 

Q 2 2  = W(S> 
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and for g(3) we have from (10) 

g ( 3 ) ( r ,  s, l) = exp(-W(r)bt, - W(s)b t ,  - W ( r ,  s, t ) b V ,  b u Z )  
V 1 3 V 2  

Partial or full application of the Poisson sum formula to (20), to either the v 1  or v 2  
summation or to the double summation, produces the following series representations 
of g(3): 

(i) When applied to a single v-summation, we obtain 

1 1  g(3) (r ,  s, t )  = ( 4 n ~ ( r ) )  -3’2 e-(Q/w(r))btl -2 C, e’aui2.bv2 
V 2  P , I  nu U l I U 2 . U ?  

x (exp{-(4W(r)) - 1 [ l a p 1 7 u 3 ,  + r12 

- iW(r, s, t )bu2  - (a,+,,, + r ) ] }  els‘bu2) 

a , l+oi l  = a , ,  + au, , .  (20-1) 

In the multiple summation, pl runs over the direct Bravais lattice points, v 2  runs over 
the reciprocal-lattice points and the us each run over the points within one unit cell. A 
second representation is obtained from (20-1) by interchanging r and s. 

(ii) When applied to the double v-summation, we obtain 

1 1 

P Pl.P2 U, .U2.U3 

g ( 3 ) ( r , s ,  t )  = ( 4 - ~ Q l / ~ ) - ~  7 - (exp{-(4Q)-’[W(s)la,,+.,, + d 2  

+ ~ ( r ) l % 2 + u , *  +SI2 - ~ ( ~ A ~ ) ( ~ , l + o ; l  +‘).(Q,*+oi2 +s)l)) 

4Q = 2 W ( t )  ( W (  r )  + W (s) ) - ( W(t) ) * - ( W( r )  - W ( S ) )  *. 

(20-11) 

(18‘) 

where Q is given by 

The angular averages in (20) affect only those factors whose exponent is bilinear in 
position and lattice vectors, Hence, factoring out the orientation independent factors 
we can write the angular averages as 

x (exp[-(4W(r))-’(2u - i u ) . r + i b , ,  *SI) 
where 

U = Q,,+U,l U = W ( r ,  s, t )bV2  

(21-1) 
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(21-11) 

where 

U 1  =a, ,+ , , ,  U 2  = a,,,,,,. 

The angular averages in (21-1) and (21-11) are given now by an expression analogous to 
(A13) where the Bessel functions depend on complex arguments and on pure imaginary 
arguments, respectively. In the latter case (A13) is rewritten as (A14). 

5. Comment on effective pair potentials 

A restrictive feature common to multi-Gaussian and multi-theta processes is the unique 
dependence of all higher-order distributions on the pair distribution. This is indeed the 
case for systems with only pairwise molecular interactions, but in principle it is incorrect 
for systems with triplet and higher-order interaction potentials. Yet given expressions 
for g and g(3), we can obtain an effective pair potential u ( r )  by solving the following 
equation from the BBGKY hierarchy: 

Putting in (22) r12 = r ,  r I 3  = s, ~ 2 3  = t and introducing 

v4r )  = Pu'( r> (23) 
and the weighted average of g(3) 

h(r ,  s) = 2 g(3)(r, s, t) cos q sin q d q where cos q = ( r 2  + s2 - t2)/2rs 

(24) 
lon 

we can rewrite (22) in the form 

g ( r ) y ( r )  + g'(r) = -np s2v(s)h(r,  s) ds. il: 
This is a linear integral equation in y ( r ) .  Note that g ' ( r )  is available in closed form from 
a term-by-term analytic differentiation of (l), but h(r, s) has to be obtained by numerical 
integration of (20) substituted into (24). Equation (25) can be solved by reducing it to 
an algebraic equation on a finite grid of points r, (see Haymet and Rice 1982). The pair 
potential is then obtained from 

Bu(r) = -1% v ( s )  ds  
r 

evaluated numerically by replacing the integral by partial sums over the grid. 
One should keep in mind that in practice even a slight change in the chosen local 

lattice could account for the difference between systems having practically the same pair 
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distribution but differing significantly by their triplet or higher interaction potentials and 
by their corresponding molecular distributions. 

Necessarily, if we make use only of scattering data at a single thermodynamic state, 
we cannot expect to find with the present procedure anything beyond an effective pair 
potential. However, given scattering data for several states, say for several temperatures 
along an isochore or an isobar, we may expect to find some hints about the more detailed 
nature of the molecular interactions, say through the persistence of a certain parent local 
L over the range of temperatures. 

It has been occasionally stated that a small difference in the triplet potentials could 
be responsible for crystallization into a preferred crystal lattice (see e.g. Jansen 1965). 
By the same toke a delicate balance between many-body interactions could be respon- 
sible for such a preferred crystallization (see e.g. Niebel and Venables 1974). Since we 
know little about such overall many-body effects, it would seem reasonable to give a 
microscopic description of the condensed system in terms of local structures L and the 
extent of their spatial coherence, which are characteristic of the overall molecular 
interactions and determine uniquely an effective pair potential, rather than in terms 
of a truncated hierarchy of potentials producing marginal and inconclusive results 
concerning preferred lattice structures. 

Appendix 

We will calculate the orientational average: 
Q = (e1(kl . r l+kz"2)  ). (AI) 

The following two triangles, X and X, arbitrarily oriented in space, are each defined 
by a pair of vectors and the angle between them: 

Let 3C define a fixed coordinate system such that X lies in the xy plane with kl directed 
along the positive x axis and k2 has a positive y component. Now let X be rotated rigidly 
to a new position such that the rotated triangle X o  = (ry, r'j, q) lies in the plane of X 
with r? directed along the positive x axis, i.e. parallel to k , ,  and r! has a positive y 
component. Using a representation of vectors in spherical harmonics components, i.e. 
a = (um, m = - 1,0,  l ) ,  we have in particular for a unit vector eu(w) lying in the xy plane 
and making an angle w with x axis: 

,x = (rl ,  r23 9) X = ( k , ,  k z ,  W ) .  (A21 

( 1 / d 2 )  e-'(' 

eO(w) = [o ] (A3) 
(1 /d2)  e'(* 

and hence we have 
k l  = k,eo(0)  k2 = kze"(W1 t-7 = r ,e"(O) r'j = rzeo(rp). ('44) 

Furthermore, let the rotation taking X o  into X, defined in terms of Eulerian angles, 
be denoted by 9 = %(CY, /3, y ) ,  with the corresponding transformation matrix 9(%) = 
%(CY, p, y )  belonging to the I = 1 representation of the rotation group (see e.g. Tinkham 
1964). We obtain then the following representation for the transformed unit vector: 

. (A51 1 ( 1 / d 2 )  e-'"[t(l + cos p)  e - l ( y f w )  + i(1 - cos p)  el(^+^)] 
e(o) = %eO(o) = (1 /d2)  isin p(e-I(y+w) + el(Y+o)) 

(1 /d2)  ele[i(l - cos p)  e-'(Y+O) + i(1 + cos p)  el(^+^)] 
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Noting that a scalar product is given in spherical harmonic components by 

a .  b = a;bm (A61 
m 

we substitute (A5) with (A4) into (Al) and obtain the orientational average in the form 

s 2 = L j j j e x p [ i ( F ( u )  8n2 + G ( u ) ) ] d a d y d c o s / 3  

where 

F(u)  = h(1 - COS P)(klrl  COS U + k212 COS(U - U ) )  

(A81 
G(u) = i(1 + cosP)(k,r ,  cos U + k2r2 cos(u + 6)) 

with 

u = a - y  u = a + y  6=cp-v u=cp + v .  (A9) 

Since d a d y = id  U du and the integrand in (A7) is doubly periodic both in ( a ,  y )  and in 
(U, U ) ,  we can replace the averaging over the rectangle -n S a, y S n by an averaging 
over the rectangle -n s U, U s n. Furthermore, since we can rewrite (A8) as 

F(u)  = +(l - COS P)A COS(U + p )  G(u) = S( l  + COS/~)BCOS(U + q )  (‘410) 
where 

A = (k!r! + k i r i  + 2klk2r l r2  cos a)”’ 
B = (k j r i  + kir: + 2 k l k 2 r l r 2  cos 8)’’’ 

(A7) can be written as 

exp(i sin2(/3/2)A cos U) exp(i cos2(/3/2)B COS U )  du 

(A121 
resulting in (see e.g. Magnus et a1 1966) 

52 = 2 loX’* ],(A sin2 B)Jo(B cos2 e) sin 6 cos 8 d e  

where Jo(x)  is the Bessel function of order zero. 
If we replace kl and k2 in (Al) by the imaginary vectors -ikl and -ik2, then A and B 

become pure imaginary, or alternatively keeping definition (All) ,  we can now write 
(A13) in terms of the modified Bessel functions: 

s2‘ = (exp(kl - rl + k2 - r z ) )  = 2 Z,(A sin2 t9)Zo(B cos2 8 )  sin 8 cos 6 de .  

(A13’) 
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